
A Hybrid Algorithm for LTL Games�

Saqib Sohail1, Fabio Somenzi1, and Kavita Ravi2

1 University of Colorado at Boulder
{Saqib.Sohail,Fabio}@Colorado.EDU

2 Cadence Design Systems
kravi@cadence.com

Abstract. In the game theoretic approach to the synthesis of reactive systems,
specifications are often given in linear time logic (LTL). Computing a winning
strategy to an infinite game whose winning condition is the set of LTL properties
is the main step in obtaining an implementation. We present a practical hybrid
algorithm—a combination of symbolic and explicit algorithm—for the computa-
tion of winning strategies for unrestricted LTL games that we have successfully
applied to synthesize reactive systems with up to 1011 states.

1 Introduction

Great progress has been made in the verification of reactive systems over the last twenty
years. The combination of sophisticated algorithms, powerful abstraction techniques,
and rigorous design methodologies has made the verification of large hardware and
software systems possible. Synthesis from specifications given as (temporal) logic for-
mulae or automata [7, 11, 39] has proved a more difficult problem and has enjoyed less
success in spite of the important applications that depend on efficient solutions of the
synthesis problem. In particular, debugging and repair are promising fields in which
techniques based on synthesis algorithms have found employment [23, 25].

Recent algorithmic advances in the determinization of Büchi automata and in the
solution of parity games have renewed hope that realistic systems may be synthesized
from their temporal specifications. In this paper we propose a hybrid approach to this
problem that combines symbolic algorithms (operating on the characteristic functions
of sets) and explicit algorithms (that manipulate individual set members).

Specifications are often made up of several relatively simple components—for in-
stance, a collection of LTL properties. If that is the case, our approach scales well be-
cause it applies the expensive explicit processing steps to the individual components
of the specification, and adopts symbolic techniques where they matter most—in the
solution of the final generalized parity game. Preliminary experiments demonstrate that
the approach is effective in dealing with rather large systems even in its current proto-
typical form. For instance, we were able to synthesize an optimal Nim player from a
description of the game bookkeeping and the property that requires victory from each
winning position.

� This work was supported in part by SRC contract 2006-TJ-1365.

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 309–323, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

310 S. Sohail, F. Somenzi, and K. Ravi

Our approach converts each component of the specification into either a Büchi
automaton or a parity automaton of minimum index. The Büchi automaton can be non-
deterministic if it fair simulates the deterministic parity automaton obtained from its
determinization by Piterman’s procedure. We show that in that case the parity automa-
ton must have a parity index less than or equal to two. The reactive system implementing
the specification is derived by symbolically computing the winning strategies of a non-
deterministic concurrent parity game obtained by composition of the several automata.

The rest of this paper is organized as follows. Section 2 recalls the notions on ω
automata and games that are pertinent to this paper. Section 3 summarizes the algo-
rithm. Section 4 discusses algorithmic choices for symbolic implementations. Section 5
discusses related work. Section 6 presents our experiment results and Sect. 7 concludes.

2 Automata and Games

A finite automaton on ω-words 〈Σ, Q, qin, δ, α〉 is defined by a finite alphabet Σ, a finite
set of states Q, an initial state qin ∈ Q, a transition function δ : Q × Σ → 2Q that maps
a state and an input letter to a set of possible successors, and an acceptance condition
α that describes a subset of Qω, that is, a set of infinite sequences of states. A run of
automaton M on ω-word w = w0w1 . . . is a sequence q0, q1, . . . such that q0 = qin,
and for i ≥ 0, qi+1 ∈ δ(qi, wi). A run is accepting iff (if and only if) it belongs to the
set described by α, and a word is accepted iff it has an accepting run in M . The subset
of Σω accepted by M is the (ω-regular) language of M . A deterministic automaton is
such that δ(q, σ) is a singleton for all states q ∈ Q and all letters σ ∈ Σ.

Several ways of specifying the acceptance condition α are in use. In this paper we
are concerned with Büchi [6], co-Büchi, parity [36, 13], Rabin [40], and Streett [46]
acceptance conditions. All these conditions are concerned with the sets of states that
occur infinitely often in a run; for run ρ, this set is written inf(ρ). Büchi and co-Büchi
acceptance conditions are both given as a set of states F ⊆ Q. A run ρ is accepting for
a Büchi (co-Büchi) condition iff inf(ρ) ∩ F 	= ∅ (inf(ρ) ∩ F = ∅). A parity acceptance
condition is given as a function assigning a priority to each state of the automaton.
Letting [k] = {i | 0 ≤ i < k}, a parity condition of index k is a function π : Q → [k].
A run ρ is accepting iff max{π(q) | q ∈ inf(ρ)} is odd; that is, if the highest recurring
priority is odd.

Rabin and Streett are given as a set of pairs of sets of states: {(U1, E1), . . . , (Uk, Ek)};
k is called the index of the condition. A run ρ is accepted according to a Rabin (Streett)
condition iff there exists i such that inf(ρ) ∩ Ui 	= ∅ and inf(ρ) ∩ Ei = ∅ (for all
i, inf(ρ) ∩ Ui = ∅ or inf(ρ) ∩ Ei 	= ∅). Rabin and Streett acceptance conditions are
complementary just as Büchi and co-Büchi are. A parity condition π : Q → [k] such
that k is even can be easily converted to a Rabin condition with k/2 pairs; hence, parity
conditions are also known as Rabin chain conditions. It is also easy to translate π to
a Streett condition. A parity condition πc complementary to π is obtained by letting
πc(q) = π(q) + 1 for all q ∈ Q.

Büchi, co-Büchi, and parity acceptance conditions may be generalized. A general-
ized Büchi condition consists of a collection F ⊆ 2Q of Büchi conditions. A run ρ is
accepting for a generalized Büchi (co-Bc̈hi) condition iff it is accepting according to

A Hybrid Algorithm for LTL Games 311

each F ∈ F (some F ∈ F). A generalized parity condition may be either conjunctive
or disjunctive and is given as a collection Π of priority functions. A run ρ is accepting
according to a conjunctive (disjunctive) condition Π iff it is accepting according to each
(some) π ∈ Π . Disjunctive and conjunctive generalized parity conditions are dual in
the same sense in which Rabin and Streett conditions are and extend them just as Rabin
and Streett conditions extend generalized co-Büchi and Büchi conditions.1

An ω-regular automaton equipped with a Büchi acceptance condition is called a
Büchi automaton; likewise for the other acceptance conditions. In this paper, we adopt
popular three-letter abbreviations to designate different types of automata. The first
letter of each abbreviation distinguishes nondeterministic (N) from deterministic (D)
structures. The second letter denotes the type of acceptance condition: Büchi (B), co-
Büchi (C), Rabin (R), Streett (S), and parity (P). The final letter indicates that the
automata read infinite words (W). As examples, NBW designates a nondeterministic
Büchi automaton (on infinite words), while DPW is the acronym for a deterministic
parity automaton (also on infinite words).

Despite their similarity to automata on finite words DBWs are less expressive than
NBWs and are not closed under complementation; accordingly, determinization is only
possible in general by switching to a more powerful acceptance condition and com-
plementation of NBWs cannot be accomplished by determinization followed by com-
plementation of the acceptance condition. Piterman [37] has recently improved Safra’s
procedure [43] so as to produce a DPW (instead of a DRW) from an NBW. The con-
struction extends the well-known subset construction for automata on finite words.
Rather than labeling each state of the deterministic automaton with a subset of states of
the NBW, it labels it with a tree of subsets. As a result, the upper bound on the number
of states of the DPW derived from an NBW with n states is n2n+2. This fast-growing
function discourages determinization of large NBWs. Concerning determinization, it
should be noted that generalizing Büchi and co-Büchi conditions provides convenience
and conciseness, but does not increase expressiveness. On the other hand, generalized
Büchi games, just like Streett games, do not always admit memoryless strategies, to be
discussed shortly.

Linear Time Logic (LTL) [49, 31] is a popular temporal logic for the specification
of nonterminating reactive systems. LTL formulae are built from a set of atomic propo-
sitions, Boolean connectives, and basic temporal operators X (next), U (until), and R
(releases). Derived operators G (always) and F (eventually) are usually included for
convenience. Procedures exist (e.g., [17]) to translate an LTL formula into an NBW
that accepts the language defined by the formula. On the one hand, if not all ω-regular
languages can be expressed in LTL, DBWs are not sufficient to translate all of LTL.2

Piterman’s determinization procedure provides a way to find a DBW equivalent to
an NBW whenever it exists. A set of states in an ω-regular automaton M is essential
if it equals inf(ρ) for some run ρ of M . A positive chain of length m is a sequence of
m essential sets R1 ⊂ · · · ⊂ Rm such that Ri satisfies the acceptance condition of M

1 Specifically, Rabin and Streett pairs can be seen as parity conditions with three colors, while
co-Büchi and Büchi conditions can be seen as parity conditions with two colors.

2 In fact, LTL formulae exist that describe ω-regular languages with arbitrarily large Rabin in-
dices. [30].

312 S. Sohail, F. Somenzi, and K. Ravi

iff i is odd. The Rabin index of an ω-regular language L is the minimum k such that
there exists a DRW with k pairs recognizing L. The Rabin index I(L) of language L
is related to the maximal length Ξ(M) of a positive chain in a deterministic automaton
ML accepting L by the equation I(L) = (Ξ(ML) + 1)/2� [48]. Carton and Ma-
ceiras have devised an algorithm that finds I(L) given a DPW that recognizes L in time
O(|Q|2|Σ|) [9]. Moreover, every DPW M that recognizes L can be equipped with a
new parity condition π : Q → [Ξ(M) + 1] without changing the accepted language.
The following procedure therefore yields a DBW from an NBW if one exists: Convert
NBW N to an equivalent DPW D by Piterman’s procedure. Compute Ξ(D) with the
algorithm of Carton and Maceiras. If Ξ(D) ≤ 1 the equivalent parity condition with
≤ 2 priorities computed together with Ξ(D) can be interpreted as a Büchi acceptance
condition; otherwise no DBW equivalent to N exists. (If Ξ(D) = 0, N accepts the
empty language.)

Deterministic ω-regular automata can be used to define infinite games [47] in several
ways. Here we consider turn-based and input-based two-player games, in which Player
0 (the antagonist) and Player 1 (the protagonist) move a token along the transitions of
the automaton. If the resulting infinite sequence of states is accepted by the automaton,
Player 1 wins, otherwise Player 0 wins. In turn-based games the set of states Q is
partitioned into Q0 (antagonist states) and Q1 (protagonist states). Each player moves
the token from its states by choosing a letter from Σ and the corresponding successor
according to δ. In input-based games, the alphabet Σ is the Cartesian product Σ0 × Σ1
of an antagonist alphabet and a protagonist alphabet. In state q, Player i chooses a letter
σi ∈ Σi. The token is then moved to δ(q, (σ0, σ1)). Turn-based games are games of
perfect information, whereas in input-based games a player may have full, partial, or no
advance knowledge of the other player’s choices. The amount of information available
to one player obviously affects its ability to win the game. If one player has knowledge
of the move of the other, then input-based games are easily reduced to turn-based games
and are therefore determinate. In our input-based games we assume that Player 1 has
no advance knowledge of the other player’s choices, while Player 0 sees the opponent’s
moves.

The existence and computation of winning strategies are central problems in the
study of infinite games. A strategy is a function that defines which letter a player should
choose at each move. A strategy for Player i in a turn-based game can be defined equiv-
alently as either a function τi : Q∗ ×Qi → Σ, or as a function: τi : Qi ×Si → Σ ×Si.
The set Si is the player’s memory; according to its cardinality, strategies are classi-
fied as infinite memory, finite memory, and memoryless (or positional). For input-based
games in which Player 1 plays without knowing the opponent’s choices but Player 0
knows what Player 1 has chosen, a strategy for Player 1 is defined as either a func-
tion τ1 : Q∗ × Q → Σ1 or a function τ1 : Q × S1 → Σ1 × S1 and a strategy
for Player 0 is defined as either a function τ0 : Q∗ × Q × Σ1 → Σ0 or a function
τ0 : Q×S0 ×Σ1 → Σ0 ×S0. A strategy τi is winning for Player i from a given state of
the automaton iff victory is secured from that state regardless of the opponent’s choices
if Player i plays according to τi.

The acceptance condition of the automaton translates into the winning condition
of the game. We consider Büchi, co-Büchi, and parity games, their counterparts with

A Hybrid Algorithm for LTL Games 313

generalized winning conditions, as well as Rabin and Streett games. All these games
are determinate [32]; that is, from each state of the automaton if a player has no win-
ning strategy then the opponent has a winning strategy. Büchi, co-Büchi, generalized
co-Büchi, Rabin, parity, and disjunctive generalized parity games admit memoryless
strategies. The others—generalized Büchi, Streett, and conjunctive generalized parity
games—admit finite memory strategies [50].

If the winning condition of an infinite game is given as an LTL formula on the states
of the automaton we have an LTL game. Such a game can be solved by translating the
formula into an equivalent deterministic ω-automaton and composing it with the graph
of the given automaton. As recalled above, not all LTL formulae have an equivalent
DBW (or DCW for that matter). Therefore, determinization to some more powerful
type of automaton is required in general. With Piterman’s improvement of Safra’s con-
struction [37], the parity condition is the natural choice.

If an NBW derived from the given LTL formula is used in solving an LTL game,
there is in general no guarantee that a winning solution will be found if one exists.
(See [19] for an example.) Henzinger and Piterman [21, Theorem 4.1] have shown,
however, that a nondeterministic automaton may still be used with the guarantee of a
winning solution if it fair simulates an equivalent deterministic automaton. (This result
subsumes [19, Theorem 1] about trivially determinizable NBWs.)

An ω-regular automaton P = 〈Σ, QP , qP in, δP , αP 〉 fair simulates [20] another such
automaton A = 〈Σ, QA, qAin, δA, αA〉 with the same alphabet if Player 1 has a winning
strategy for the following turn-based game: Initially, the protagonist token is placed on
qP in and the antagonist token is placed on qAin. At each turn, let p ∈ QP be the state
with the protagonist token and let a ∈ QA be the state with the antagonist token. Player
0 chooses a letter σ ∈ Σ and moves the A token to one of the states in δA(a, σ).
Player 1 then moves the P token to one of the states in δP (p, σ). Player 1 wins if
either the run of A is not in αA or the run of P is in αP . A winning strategy for
Player 1 is a function τ : (QA × QP × Σ)+ → QP that is consistent with δP (∀a ∈
QA, p ∈ QP , σ ∈ Σ . τ(a, p, σ) ∈ δP (p, σ)) and that guarantees victory regardless of
the opponent’s choices.

When a game played on an ω-regular automaton has nondeterministic transitions
one needs to define which player is in charge of resolving nondeterminism. In an input-
based game derived from an LTL game, Player 1, whose objective is to force the run
of the automaton to satisfy the LTL formula, chooses the next state from δ(q, (σ0, σ1)).
A nondeterministic automaton for a given language can be much more compact than
a deterministic one. Hence, [21, Theorem 4.1] may lead to considerable savings in
the computation of winning strategies. On the negative side, we offer the following
theorem, which implies that an NBW can only be used if an equivalent DBW exists.

Theorem 1. Let N be an NBW and D an equivalent DPW. Let D be of minimum index
k > 2. Then N does not fair simulate D.

Proof. We assume that N has a strategy τ to simulate D and show that this leads to a
contradiction. Since the winning condition of the simulation game is the disjunction of
two parity conditions, we can assume that τ is memoryless. Since k > 2 there is a chain
of essential sets

R1 ⊂ R2 ⊂ · · · ⊂ Rk−1

314 S. Sohail, F. Somenzi, and K. Ravi

with R2i+1 accepting and R2i rejecting. Let p be a state of D in R1. (By the chain
property, p is also in R2.) Let u ∈ Σ∗ be a word that takes D from the initial state to
p. Let v ∈ Σ∗ \ {ε} be a word that takes D from p back to p while visiting all states
of R1 at least once. Finally, let w ∈ Σ∗ \ {ε} be a word that takes D from p back to p
while visiting all states of R2 at least once. The existence of p, u, v, and w is guaranteed
because R1 and R2 are essential sets.

We construct an ultimately periodic word x as follows. We initialize x to u and
Γ = ∅. Let q1

0 be the state reached by N when reading x and following τ . Append
copies of v to x and extend the run of x in D and N . The run of D will reach p every
time a copy of v is added. The run of N will go through states q1

1 , q
1
2 , Stop as soon

as, for some j > 0 and i < j, q1
i = q1

j . Call q1 this repeating state, and add it to
Γ . (Repetition is inevitable because N is finite.) Append w to x and call q2

0 the state
reached by N after running over the updated x. (D will be in p.) Now append more
copies of v to x until there are j and i < j such that q2

i = q2
j . Call q2 this repeating

state. If q2 is not in Γ add it, append w to x and repeat; otherwise stop.
This process must terminate because |Γ | grows at each iteration. At termination,

qn
i = qm for some qm ∈ Γ and m < n. We let x = yzω, with y the prefix of x up to

the first occurrence of qm and z the segment between the first and second occurrence.
D rejects x because its essential set is R2, but accepts x′ = yvω whose essential

set is R1. Consider now N . We know that the run of N on x′ according to τ must
repeatedly go through qm. Since x′ is accepted by D, the segments of the run in N
between occurrences of qm must visit some accepting state of N . However, this implies
that x is also accepted because the run of x also goes through qm when D is in p, and
qm is in Γ because it was seen twice in conjunction with p while applying v repeatedly.
Since D and N are equivalent the assumption that τ exists is contradicted and the
theorem is proved. ��

For lack of space we do not present the extension of Theorem 1 to simulations between
two arbitrary parity automata.

3 Algorithm

We describe an algorithm that takes as input a collection of LTL formulae and NBWs
over an alphabet Σ = Σ0 × Σ1. The input is converted into a conjunctive general-
ized parity game with one parity function for each formula and automaton. At each
turn, Player 0 chooses a letter from Σ0 and Player 1 chooses a letter from Σ1. The
objective of Player 1 is to satisfy the conjunctive generalized parity acceptance con-
dition. A winning strategy for Player 1 from the initial state of the parity automaton
thus corresponds to an implementation of a reactive system that reads inputs from
alphabet Σ0 and produces outputs from alphabet Σ1. The reactive system satisfies all
the linear-time properties given as LTL formulae or Büchi automata from its initial
state. If no such winning strategy exists, there exists no implementation of the given
specification.

As an initial step, all LTL formulae are converted to NBWs (using Wring [45]).
The objective of the algorithm is to be efficient for practical specifications, which

A Hybrid Algorithm for LTL Games 315

often consist of the conjunction of many simple properties. While in theory one could
conjoin all the NBWs to obtain one large NBW and then determinize it, the high
complexity of determinization makes this approach infeasible. Instead, each NBW that
is not also a DBW is converted to a DPW individually with Piterman’s procedure [37].
This keeps the size of the resulting DPWs reasonably small, as discussed in Sect. 6. A
parity condition of minimum index is then computed for each DPW by the procedure
of [9].

If the parity index is 2, then fair simulation between the NBW and the DPW (which
is in fact in this case a DBW), is checked with the algorithm of [26] (implemented
as in [14, 18]). If the DPW is simulated by the NBW, the latter replaces the former.
(See Theorem 1. From a practical standpoint it should be noted that the NBW is made
complete before checking for fair simulation, because otherwise the check is guaranteed
to fail.) If there is no fair simulation, the DPW is optionally simplified. (This is done
after reducing the index, to increase the chance of simplification.) All the processing
up to this point is done by explicit (i.e., non-symbolic) algorithms. At the end of this
phase, each specification has been translated into one of the following: a DBW, a DPW,
or an NBW that simulates an equivalent DBW.

The next step of processing reduces the collection of automata to a generalized parity
game [10]. The transition structures of the automata are converted into one symbolic
transition relation—as is customary in symbolic model checking. Effective ways of
avoiding blow-up in the composition of the transition relations are well-known [15,
41, 35]. The parity (or Büchi) conditions for all the automata collectively form the
generalized parity condition.

We use the “classical” algorithm described in [10] to compute winning strategies for
generalized parity conditions. This algorithm is based on [22], which in turn extends
Zielonka’s algorithm for parity conditions [50].3 The generalized parity algorithm se-
lects one parity condition and tries to prove all states winning for Player 1, using the
maximum color from the selected priority function and recurring on a subgame for the
remaining colors and parity conditions.

If Player 1 wins in all the states, the algorithm proceeds to the next parity condition.
If, on the other hand, Player 0 has some winning states, the algorithm restarts on a game
graph that is pruned of the winning states of Player 0.

At a given recursion level, each parity condition produces a sub-strategy for Player 1.
Therefore, Player 1 uses a counter to rotate among these sub-strategies. For a fixed order
in the priority conditions, the total memory required is bound by

∏
1≤i≤k(k − i + 1)di ,

where 2di + 1 is the number of colors of the i-th priority condition.
The choice of this algorithm over the dominion-based algorithm in [10, 27] is for

two reasons. The first is the unsuitability of the dominion-based algorithm to symbolic
implementation as discussed in Sect. 4. The second is that the dominion-based algo-
rithm has better asymptotic bounds only when the number of colors is comparable to
the number of states. However, in our application, this is seldom, if ever, the case.

The basic attractor computation for each player in the generalized parity algorithm
is based on an extension of the MX operator discussed in [23]. Specifically, the set of

3 The algorithm in [10] contains a bug that is easily fixed by reverting the termination condition
of the inner loop to the one given in [22].

316 S. Sohail, F. Somenzi, and K. Ravi

states that Player i can control to a target set of states T ⊆ Q (the attractor of T for
Player i) is given by:

MX1 T = {q | ∃σ1 ∈ Σ1 . ∀σ0 ∈ Σ0 . ∃q′ ∈ δ(q, (σ0, σ1)) . q′ ∈ T }
MX0 T = {q | ∀σ1 ∈ Σ1 . ∃σ0 ∈ Σ0 . ∀q′ ∈ δ(q, (σ0, σ1)) . q′ ∈ T } .

This formulation implies that Player 1 chooses σ1 from Σ1 first, then Player 0 chooses
σ0 from Σ0, and finally nondeterminism is resolved in favor of Player 1. (That is, all
nondeterminism is due to the NBWs representing the properties.) Since Player 1 has
no knowledge of the upcoming opponent’s move, it has a winning strategy only if a
Moore-style implementation of the specification exists.

4 Practical Symbolic Algorithms

In the context of verification and synthesis of reactive systems, symbolic algorithms are
broadly defined as those algorithms that employ characteristic functions to represent
sets. The use of Binary Decision Diagrams [5] to manipulate Boolean functions, in par-
ticular, is typically associated with the idea of symbolic algorithms. Techniques like the
symbolic model checking algorithm of McMillan [33] have significantly contributed to
the success of formal verification thanks to their ability to deal—albeit not with uniform
efficiency—with sets of size well beyond the capabilities of more conventional, explicit
algorithms. While such successes encourage the use of symbolic algorithms, not all al-
gorithms are amenable to symbolic implementation, leading to a conflict between the
choice of one with lowest complexity and one that is symbolic-friendly. Our approach
is to use the best algorithm in terms of worst-case complexity that is efficiently imple-
mentable in a symbolic manner. In this Section, we try to identify some algorithmic
features that are best suited to symbolic implementations.

Obviously, algorithms that process the elements of a large set one by one draw only
modest benefit from representing such a set symbolically and are limited to manipulat-
ing relatively small sets. Some algorithms resort to picking a (hopefully) small number
of seed elements from a large set. Examples are provided by the subquadratic symbolic
algorithms for Strongly Connected Component (SCC) analysis [2, 16] that grow an
SCC with symbolic techniques starting from an individual seed state. (In this context,
complexity refers to the number of images and preimages computed.) While these algo-
rithms are rightfully considered symbolic, it should be noted that for cycle detection in
very large graphs they tend to be outperformed by “more symbolic” algorithms based
on computing a hull of the SCCs [42] in spite of their better complexity bounds. Closer
to the subject of this paper, one can compare two variants of McNaughton’s algorithm
[34] (adapted to parity automata by Zielonka [50]) that appear in [47] and [27]. The
algorithm in [27] is “more symbolic” than the one in [47] because it computes the at-
tractor of all states of maximum priority at once instead of picking one state from that
set and computing its attractor. Notice that the computation of the attractor, which is at
the heart of the generalized parity algorithm, is very similar to the fixpoint computations
performed in symbolic model checking, and therefore eminently suitable for symbolic
implementation. Consequently, one can also leverage various techniques to speed up
symbolic model checking in the implementation of the algorithms in [50, 22, 10].

A Hybrid Algorithm for LTL Games 317

Both variants of McNaughton’s algorithm, on the other hand, are far more amenable
to symbolic implementation than the algorithms that have superseded them in terms of
asymptotic performance. Consider the small progress measure algorithm of Jurdziński
[26]. If an SCC of the game graph contains a losing position, the number of iterations
is bounded from below by the number of states of a certain priority in the SCC. For a
large graph that number may be large enough to prevent termination in practice, even
with the optimization of [12]. Another problem with the algorithm of [26] is the need
to attach and manipulate a vector of integers to every state of the game graph. As the
number of distinct measures increases in the course of the computation, the size of the
decision diagrams representing the map from states to measures may easily blow up.
Similar observations apply to the algorithms of [1] and the small dominion versions of
the ones in [10, 27]. Therefore, we use an explicit implementation of the algorithm of
[26] to check fair simulations of small automata derived from individual properties, but
prefer the algorithm in [10] for the analysis of large games obtained compositionally.

Besides avoiding explicit enumeration of the elements of large sets, successful sym-
bolic algorithms also limit the arity of relations that are represented symbolically. Even
ternary relations, as encountered in the computation of the transitive closure of a graph,
tend to impact performance significantly. Finally, the need to represent arbitrary sub-
sets of the powerset of a large set puts a very severe limit on the size of the problems
that can be handled by a symbolic algorithm. While 1020 states have become a rather
conservative estimate of what can be done in model checking, algorithms that allocate
one BDD variable to each state in a set so as to represent collections of subsets by the
characteristic functions of their occurrence vectors (as required by the algorithms of
[30, 21]) are limited in most cases to a hundred states or less. For such reasons we pre-
fer an explicit implementation of Piterman’s improved determinization procedure [37]
to the approach of [21].

5 Related Work

In Sect. 4 we have discussed the relation and indebtedness of our work to [26, 1, 27, 22,
21, 10]. An alternative to our approach is to translate the set of parity conditions arising
out of the Piterman’s procedure to Streett conditions that are then converted to a single
parity condition with the algorithm of [8]. However, the algorithm of [22, 10] has better
worst-case complexity.

The approaches of [19] and [38, 3] are symbolic, but are restricted in the class of
specifications that can be dealt with. In [38] it is noted that checking the realizability of
a formula of the form

∧

1≤i≤m

(GFJ1
i) →

∧

1≤i≤n

(G FJ2
i) , (1)

where each Jj
i is propositional (a generalized Reactivity(1) formula) can be done in

time proportional to (nm|Σ|)3, where Σ is the set of atomic propositions in (1). More-
over, formulae of the form ∧

1≤i≤p

GBi , (2)

318 S. Sohail, F. Somenzi, and K. Ravi

where the only temporal operator allowed in each Bi is the next-time operator X, effec-
tively correspond to the description of transition relations and can be directly regarded
as the description of the game graph. This second observation applies also to our ap-
proach, while a specification like (1), can be translated into a DPW with O(mn) states,
O(mn|Σ|) transitions, and 3 colors. Therefore, the class of specifications handled by
[38] can be handled efficiently by our algorithm, which on the other hand, can deal with
full LTL.

An approach to LTL synthesis that does not require determinization was introduced
in [30, 29]. An implementation is described in [24]. From an LTL formula one derives
a universal co-Büchi tree automaton (UCT), and transforms it into an NBT. A witness
to language nonemptiness, if it exists, corresponds to a winning strategy. While this
“Safraless” approach has the same worst-case complexity as the “Safraful” approach
based on determinization, its proponents claim three main advantages for it. First, that
its implementation is simpler than that of the determinization procedure. Second, that
the Safraless approach lends itself to symbolic implementation. Third, that optimiza-
tions can be applied at various steps of the Safraless approach to combat the state ex-
plosion. Our implementation of Piterman’s procedure, however, is only a few hundred
lines of code and took only a few days to write and debug. Concerning the symbolic im-
plementation, the Safraless approach requires the manipulation of sets of sets of states.
As discussed in Sect. 4, this greatly reduces the effectiveness of a symbolic implemen-
tation. The ability to apply intermediate optimizations is beneficial, and the approach
is efficient when the UCT is weak. On the other hand, for strong UCT, the approach is
practically unable to prove nonrealizability [24]. It appears that only a thorough experi-
mental comparison, beyond the scope of this paper, could ascertain the relative practical
strengths of the Safraless and determinization-based approaches.

The work of Jobstmann et al. [25] addresses the extraction of efficient implementa-
tions from the winning strategies, which is something we do not address in this paper.

Sebastiani and Tonetta [44] present a procedure that strives to produce a deterministic
Büchi automaton from an LTL formula. Their approach may improve the performance
of our translator by reducing the number of instances in which Piterman’s determiniza-
tion procedure is invoked. The procedure of [44], however, is heuristic. Consider the
following LTL formula:

ϕ = p ∧ (p UG((¬p → X p) ∧ (p → X¬p))) .

Let ψ = G((¬p → X p) ∧ (p → X¬p)) and θ = p U ψ. Expansion yields

ψ = (p ∧ X(¬p ∧ ψ)) ∨ (¬p ∧ X(p ∧ ψ))
ϕ = (p ∧ X(¬p ∧ ψ)) ∨ (p ∧ X θ)

¬p ∧ ψ = ¬p ∧ X(p ∧ ψ)
p ∧ ψ = p ∧ X(¬p ∧ ψ)

θ = (p ∧ X(¬p ∧ ψ)) ∨ (¬p ∧ X(p ∧ ψ)) ∨ (p ∧ X θ) .

This is a set of closed covers. The cover for ϕ is nondeterministic and branch postpone-
ment is not applicable. Hence, the MoDeLLA algorithm would (initially) produce a
nondeterministic automaton. However, there exists a deterministic Büchi automaton for

A Hybrid Algorithm for LTL Games 319

¬pp p

Fig. 1. Deterministic automaton for ϕ = p ∧ (pU G((¬p → X p) ∧ (p → X ¬p)))

ϕ, shown in Fig. 1. Even though the procedure of [44] does not guarantee a determin-
istic automaton whenever one exists for the given LTL formula, branch postponement
tends to increase the chances that the NBW will fair-simulate the DBW produced by
determinization.

6 Experiments

The procedure described in Sect. 3 has been implemented as an extension of Wring [45]
and Vis [4]. In this section we report on some preliminary experiments intended to test
the claim of practicality and scalability of the proposed approach. Each of the following
specifications was synthesized, and the the resulting model was verified against the
specification. In these experiments we disabled the use of NBWs in the parity game.

Generalized Büchi. In this experiment, Player 1 seeks to satisfy a generalized Büchi
condition (GF b)∧ (GF c) in a simple automaton. The strategy uses one bit of memory.

NBW7. In this experiment the specification is an NBW for (F G p) ∧ (GF q). The lan-
guage is not in DBW or DCW and as a result the NBW is translated into a DPW of
index 3. In the game, Player 1 controls both p and q and wins from all states of the
automaton. Since there is only one parity condition, the strategy is memoryless.

Simple Arbiter. Three DBWs specify this simple synchronous arbiter that grants request
even if they are not persistent, guarantees fairness, and produces no spontaneous grants.
Player 0 chooses the values of the two request signals and Player 1 chooses the values
of the grant signals. The specification is symmetric with respect to the two clients, and
the strategies computed by the program come in symmetric pairs.

Round Robin Arbiter. This experiment synthesizes an arbiter from a collection of 10
safety properties from [28]. This is a more detailed specification than the one of the
simple arbiter, as it prescribes, for example, how ties should be broken. Once again,
Player 1 controls the grant signals, while the opponent controls the requests.

Combination Lock. In this experiment the objective is to synthesize the finite state
machine controller of a combination lock. Given a counter that can be incremented or
decremented by a user and represents the dial of the lock, and a set of seven properties
that prescribe that the lock opens iff the correct combination is entered, Player 1 seeks
a strategy for the update of the control machine of the lock, while Player 0 operates the
counter under a fairness constraint.

320 S. Sohail, F. Somenzi, and K. Ravi

Nim Player. The game of Nim is played with several piles of counters. A move consists
of taking one or more counters from one pile. The player who removes the last counter
wins. The Sprague-Grundy theory of impartial games applies to it and it is known which
player has a winning strategy from a given position and how to play according to such
strategy. In this experiment, the specification is split between a model that does the
game bookkeeping and plays one side of the game, and an LTL property:

G((¬turn ∧ winning) → F win) ,

which says that when the environment moves from a winning position, it always wins.
Satisfying this property entails synthesizing an optimal player. The bookkeeper has a
fixed number of piles, but chooses nondeterministically how many counters to place on
each pile at the start of a play. This choice is given to Player 0 in the game, while Player
1 plays the environment.

Table 1. Experimental data

name Spec Int colors bits σ σo CPU (s)
LTL NBW DBW DPW edges nodes edges nodes pp sol

GB 0 2 2 0 4 1 10 8 8 3 0 0
NBW7 0 1 0 1 3 0 10 7 6 1 0 0
simple 0 3 3 0 6 6 44 53 398 12 0 0.01
rrobin 10 0 10 0 20 17 250 112 16588800 66 13.55 0.1
lock 7 0 5 2 16 13 3196 302 1277280 178 2.71 1.35
nim 0 1 1 0 2 1 8.29e+11 3410 1.87e+11 298 0 22.63

The results of the experiments are summarized in Table 1. For each game the num-
ber of LTL formulae and NBWs in the specification are given, followed by two columns
that give the statistics of processing each formula or automaton. The remaining columns
describe the resulting generalized parity game and its solution by reporting the total
number of different priorities (or colors) of the parity acceptance condition, the number
of binary state variables of the strategy automaton, the number of edges in the union of
all winning strategies computed for Player 1 (σ), the size of the corresponding BDD,
the number of edges in an optimized winning strategy (σo), and the size of the corre-
sponding BDD. Finally, the time to preprocess (pp) and solve the game and compute
the optimized strategy (sol) is given. (The optimization of the strategy [3] never takes
more than 0.17 s in the experiments of Table 1.) The number of edges in the optimized
strategy may be higher than in the bundle of strategy returned by the algorithm because
edges from positions that are losing for Player 1 may be added if they help reduce the
size of the BDD. Our algorithm does not yet optimize the number of bits in the strategy
automaton, which is therefore far from optimal.

7 Conclusion

We have presented an algorithm for the computation of strategies for LTL games and,
in general, for games whose winning conditions are given by a set of LTL formulae

A Hybrid Algorithm for LTL Games 321

and Büchi automata. The solution involves determinization, but only on the individual
components of the specification. Since these components are typically small, our ap-
proach appears to scale well and is capable of handling games with large numbers of
states. To that effect symbolic techniques are applied where it matters most—after the
individual automata have been composed. The initial experimental results encourage us
to continue in the development of this algorithm so that it may address larger and more
realistic problems.

References

[1] Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm for par-
ity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 663–674.
Springer, Heidelberg (2003)

[2] Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component
analysis in n log n symbolic steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000.
LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)

[3] Bloem, R., et al.: Specify, compile, run: Hardware form PSL. In: 6th International Work-
shop on Compiler Optimization Meets Compiler Verification. Electronic Notes in Theo-
retical Computer Science (2007), http://www.entcs.org/

[4] Brayton, R.K., et al.: VIS: A system for verification and synthesis. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)

[5] Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers C-35(8), 677–691 (1986)

[6] Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proceedings
of the 1960 International Congress on Logic, Methodology, and Philosophy of Science,
pp. 1–11. Stanford University Press (1962)

[7] Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies.
Trans. Amer. Math. Soc. 138, 295–311 (1969)

[8] Buhrke, N., Lescow, H., Vöge, J.: Strategy construction in infinite games with Streett and
Rabin chain winning conditions. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS,
vol. 1055, pp. 207–225. Springer, Heidelberg (1996)

[9] Carton, O., Maceiras, R.: Computing the Rabin index of a parity automaton. Theoretical
Informatics and Applications 33, 495–505 (1999)

[10] Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized Parity Games. In: Seidl, H.
(ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 153–167. Springer, Heidelberg (2007)

[11] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

[12] de Alfaro, L., Faella, M.: Accelerated algorithms for 3-color parity games with an appli-
cation to timed games. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 108–120. Springer, Heidelberg (2007)

[13] Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proc. 32nd
IEEE Symposium on Foundations of Computer Science. pp. 368–377 (October 1991)

[14] Etessami, K., Wilke, T., Schuller, A.: Fair Simulation Relations, Parity Games, and State
Space Reduction for Büchi Automata. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, Springer, Heidelberg (2001)

[15] Geist, D., Beer, I.: Efficient model checking by automated ordering of transition relation
partitions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 299–310. Springer, Heidel-
berg (1994)

http://www.entcs.org/

322 S. Sohail, F. Somenzi, and K. Ravi

[16] Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected componenets in a
linear number of symbolic steps. In: Symposium on Discrete Algorithms, Baltimore, MD
(January 2003)

[17] Gerth, R., et al.: Simple on-the-fly automatic verification of linear temporal logic. In: Pro-
tocol Specification, Testing, and Verification, pp. 3–18. Chapman and Hall, Boca Raton
(1995)

[18] Gurumurthy, S., Bloem, R., Somenzi, F.: Fair Simulation Minimization. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

[19] Harding, A., Ryan, M., Schobbens, P.-Y.: A new algorithm for strategy synthesis in LTL
games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 477–
492. Springer, Heidelberg (2005)

[20] Henzinger, T., Kupferman, O., Rajamani, S.: Fair simulation. In: Mazurkiewicz, A.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 273–287. Springer, Heidel-
berg (1997)

[21] Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik, Z. (ed.)
CSL 2006. LNCS, vol. 4207, pp. 394–409. Springer, Heidelberg (2006)

[22] Horn, F.: Streett games on finite graphs. In: Workshop on Games in Design and Verifica-
tion, Edimburgh, UK (July 2005)

[23] Jin, H., Ravi, K., Somenzi, F.: Fate and free will in error traces. Software Tools for Tech-
nology Transfer 6(2), 102–116 (2004)

[24] Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: Formal Methods in Com-
puter Aided Design (FMCAD 2006), San Jose, CA, pp. 117–124 (November 2006)

[25] Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer, Heidelberg
(2005)

[26] Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison,
S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

[27] Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for
solving parity games. In: Proceedings of ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2006, Miami, FL, pp. 117–123 (January 2006)

[28] Katz, S., Grumberg, O., Geist, D.: Have I written enough properties?” — A method of
comparison between specification and implementation. In: Pierre, L., Kropf, T. (eds.)
CHARME 1999. LNCS, vol. 1703, pp. 280–297. Springer, Heidelberg (1999)

[29] Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)

[30] Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Foundations of Computer
Science, Pittsburgh, PA, pp. 531–542 (October 2005)

[31] Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their
linear specification. In: Proceedings of the Twelfth Annual ACM Symposium on Princi-
ples of Programming Languages, New Orleans, pp. 97–107 (January 1985)

[32] Martin, D.A.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)
[33] McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1994)
[34] McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied

Logic 65, 149–184 (1993)
[35] Moon, I.-H., Hachtel, G.D., Somenzi, F.: Border-block triangular form and conjunction

schedule in image computation. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000.
LNCS, vol. 1954, pp. 73–90. Springer, Heidelberg (2000)

[36] Mostowski, A.W.: Regular expressions for infinite trees and a standard form of automata.
In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 157–168. Springer, Heidelberg
(1985)

A Hybrid Algorithm for LTL Games 323

[37] Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity
automata. In: 21st Symposium on Logic in Computer Science, Seattle, WA, pp. 255–264
(August 2006)

[38] Piterman, N., Pnueli, A., Sa´ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

[39] Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. Symposium on
Principles of Programming Languages (POPL 1989), pp. 179–190 (1989)

[40] Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. In: Regional Confer-
ence Series in Mathematics, American Mathematical Society, Providence (1972)

[41] Ranjan, R.K., et al.: Efficient BDD algorithms for FSM synthesis and verification. In:
Presented at IWLS 1995, Lake Tahoe, CA (May 1995)

[42] Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for the
computation of fair cycles. In: Johnson, S.D., Hunt Jr, W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

[43] Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann Insti-
tute of Science (March 1989)

[44] Sebastiani, R., Tonetta, S.: More deterministic” vs. “smaller” Büchi automata for efficient
LTL model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860,
pp. 126–140. Springer, Heidelberg (2003)

[45] Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

[46] Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decid-
able. Information and Control 54, 121–141 (1982)

[47] Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C.
(eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)

[48] Wagner, K.: On ω-regular sets. Information and Control 43(2), 123–177 (1979)
[49] Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths. In: Pro-

ceedings of the 24th IEEE Symposium on Foundations of Computer Science, pp. 185–194
(1983)

[50] Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theoretical Computer Science 200(1–2), 135–183 (1998)

	A Hybrid Algorithm for LTL Games
	Introduction
	Automata and Games
	Algorithm
	Practical Symbolic Algorithms
	Related Work
	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

