Reachability Games of Ordinal Length

J. Cristau F. Horn

LIAFA - Paris

January 21st, 2008

Plan

Motivation

Infinite games

Ordinals

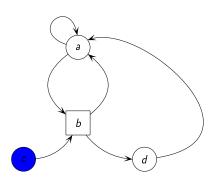
Solving reachability games

Conclusion

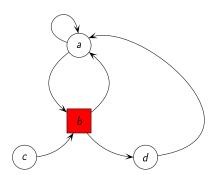
Motivation

- ► Games: useful for verification, controller synthesis
 - One player (Eve) corresponds to the system, the opponent (Adam) represents the system
- ► Zeno behaviours: timed systems, real time models, ...
- Modelisation of systems where an unbounded number of events happen in finite time

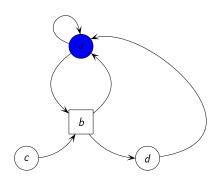
- ightharpoonup Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- \triangleright 2 players, Adam and Eve; Adam plays in V_A and Eve in V_E
- ► Winning condition



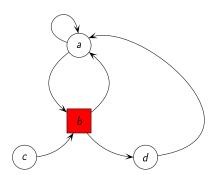
- ightharpoonup Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- \triangleright 2 players, Adam and Eve; Adam plays in V_A and Eve in V_E
- ► Winning condition



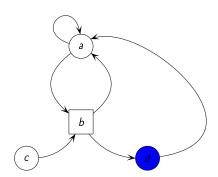
- ▶ Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- \triangleright 2 players, Adam and Eve; Adam plays in V_A and Eve in V_E
- ► Winning condition



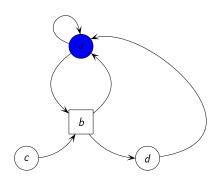
- ightharpoonup Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- \triangleright 2 players, Adam and Eve; Adam plays in V_A and Eve in V_E
- ► Winning condition



- Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- \triangleright 2 players, Adam and Eve; Adam plays in V_A and Eve in V_E
- ▶ Winning condition



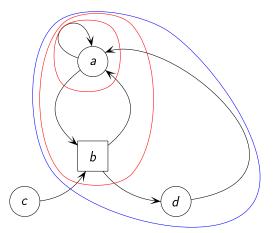
- ▶ Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- \triangleright 2 players, Adam and Eve; Adam plays in V_A and Eve in V_E
- ► Winning condition



Muller games

Winning condition: Eve wins if the set of states visited infinitely often is in \mathcal{F} .

Example: Eve wins $\{a, b, d\}$, Adam wins $\{a, b\}$ and $\{a\}$.



A play is an infinite word, like cbabdababdabdababababa....

Problems

A game is given by a partitioned graph and a winning condition. We want to know:

- whether the game is determined (one of the players has a winning strategy);
- given an initial state, which is the winning player;
- how to compute a winning strategy.

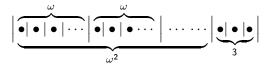
Muller games are determined (Martin), finding the winner is PSPACE-complete (Hunter and Dawar).

Beyond ω

We want models of systems where infinitely many actions can happen in finite time.

Examples:

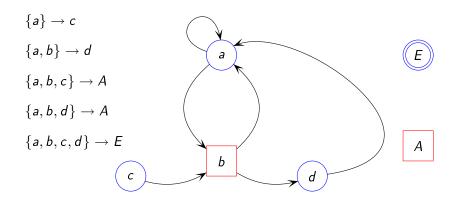
- ω
- $\sim \omega^2 + 3$



A play is now a word of ordinal length, such as $((ab)^{\omega}c)^{\omega}(ba)^{\omega}d$

Games

We add limit transitions to the arena.



Eve wins when the token reaches vertex A.

A technical restriction

Limit transitions of the form $P \to q$ where $q \in P$ are forbidden. This ensures that plays can't be longer than ω^ω .

TODO: dessin

Problems

Reachability game of ordinal length

- a graph with limit transitions,
- two players,
- a state to reach.

The questions are:

- ▶ is the game determined?
- if yes, which player has a winning strategy?
- can his strategy be computed?

Note that the length of a play is not known in advance: the game stops when one of the players wins.

Results

Theorem

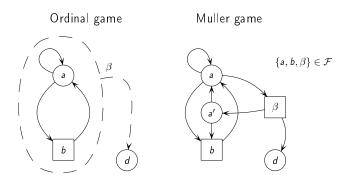
Reachability games of ordinal length $<\omega^{\omega}$ are determined.

Theorem

Finding the winner is PSPACE-complete.

Idea of the proof: the game is reduced to a Muller game, which we know how to solve.

Reduction



There is a translation from a winning strategy in the Muller game to a winning strategy in the ordinal game.

Conclusion

Results:

- One of the players always wins
- ► Finding the winner with same complexity as for traditional Muller games

Remaining questions:

- ► How much memory is needed? Are there classes where it is finite?
- Can we lift the restriction to ordinals $<\omega^{\omega}$?