Graph games on ordinals

Julien Cristau Florian Horn

LIAFA - Paris

Séminaire automates 30 janvier 2009

Outline

Infinite games

Ordinals

Reduction

Priority games

Solving reachability games

Conclusion

Two player games

- Verification of open systems, controller synthesis
 - One player (Eve) corresponds to the system, the opponent (Adam) represents the hostile environment
 - Winning condition: specification of the system
 - Strategy for Eve: controller ensuring that the spec is met

- ► Length of plays
 - finite: Interactions limited in depth
 - ▶ infinite: Reactive systems
 - ordinal: Timed systems with potential Zeno behaviours

- ightharpoonup Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- ▶ 2 players, Eve and Adam; Eve plays in V_E and Adam in V_A
- ▶ Winning condition

- ightharpoonup Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- ▶ 2 players, Eve and Adam; Eve plays in V_E and Adam in V_A
- ▶ Winning condition

- ightharpoonup Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- ▶ 2 players, Eve and Adam; Eve plays in V_E and Adam in V_A
- Winning condition

- ightharpoonup Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- ▶ 2 players, Eve and Adam; Eve plays in V_E and Adam in V_A
- ▶ Winning condition

- ightharpoonup Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- \triangleright 2 players, Eve and Adam; Eve plays in V_E and Adam in V_A
- Winning condition

- ightharpoonup Finite graph G = (V, E)
- ▶ Partition $V = V_E \cup V_A$
- ▶ 2 players, Eve and Adam; Eve plays in V_E and Adam in V_A
- Winning condition

Beyond ω

We want models of systems where infinitely many actions can happen in finite time (Zeno behaviours).

A play is now a word of ordinal length, such as $((ab)^{\omega}c)^{\omega}(ba)^{\omega}d$

Examples:

- $\triangleright \omega$
- $\sim \omega^2 + 3$

Why ordinals?

Extension of Church's problem (Rabinovich & Shomrat)

Automata on ordinal words (Büchi)

Timed systems (ordinals allow to consider Zeno behaviours)

Muller games

Winning condition: Eve wins if the set of states visited infinitely often is in \mathcal{F} .

A play is an infinite word, like cbabdababababababababa....

Parity games

Winning condition: Eve wins if the least colour visited infinitely often is even.

A play is an infinite word, like cbabdababdabababababa....

Problems

A game is given by a partitioned graph and a winning condition.

We want to know:

- whether the game is determined (one of the players has a winning strategy)
- given an initial state, which is the winning player
- is there a finitely-representable winning strategy
- how to compute such a winning strategy

Theorem

Muller games are determined (Martin).
Finding the winner is PSPACE-complete (Hunter and Dawar).

Extending Muller games

We add limit transitions to the arena.

Winning condition: Eve wins when the token reaches vertex E.

Reduction

A winning strategy in the Muller game corresponds to a winning strategy in the ordinal game.

Translating strategies

Results

Determinacy

Direct consequence of the strategy translation

Finding the winner is PSPACE-complete Same complexity as traditional Muller games

But..

- Restricted to certain arenas: no limit transitions of the form $P o q \in P$
- Strategies need infinite memory

Special case: priority transitions

We add priorities to the states, and limit transitions to the arena.

Winning condition: Eve wins when the token reaches vertex E.

Results

Theorem

Reachability games of ordinal length are determined.

Theorem

In an ordinal priority game, finding the winner is $NP \cap co-NP$. The winning player has a positional strategy.

Corollary

In an ordinal Muller game with n vertices, the winner has a strategy with n! memory states.

One can compute winning strategies using a variant of Zielonka's algorithm. These strategies are positional.

Idea: compute successive attractors and refine until we have the winning regions.

0	1	2	3	4	5
Е	Α	Α	Α	Α	А
0					

0	1	2	3	4	5
Е	Α	А	Α	Α	А
0		f			

0	1	2	3	4	5
E	Α	А	Е	Α	А
0		f	b, e		

0	1	2	3	4	5
Е	Α	А	Е	Α	А
0		f	b,e	c, d	

0	1	2	3	4	5
Е	Α	А	Е	Α	E
•		f	b,e	c, d	а

0	1	2	3	4	5
Е	Α	А	Е	Α	E
•		f	b,e	c, d	а

0	1	2	3	4	5
E	Α	А	Е	Α	А
0		f	a, b, e		

0	1	2	3	4	5
Е	Α	А	Е	А	А
0		f	a,b,e		

0	1	2	3	4	5
Е	Α	Α	Е	Α	А
0		f	a, b, e	c, d	

0	1	2	3	4	5
Е	Α	Α	Е	Α	А
•		f	a, b, e	c, d	

0	1	2	3	4	5
E	Α	Α	Е	Α	E
0		c, d, f			

0	1	2	3	4	5
Е	Α	Α	Е	А	Е
0		c,d,e,f			

0	1	2	3	4	5
E	Α	А	Е	Α	Е
0		c,d,e,f	Ь		

0	1	2	3	4	5
Е	Α	Α	Е	А	Е
0		c,d,e,f	Ь		а

0	1	2	3	4	5
Е	Α	А	Е	Α	А
0		c, d, e, f	a, b		

0	1	2	3	4	5
Е	Α	Е	Е	Α	А
⊚, a, b		e, f		c, d	

0	1	2	3	4	5
Е	А	Е	А	Α	А
⊚, a, b	c, d	e, f			

0	1	2	3	4	5
Е	Α	Е	Е	А	А
\odot , a , b , e , f				c, d	

0	1	2	3	4	5
Е	Α	Α	Α	Α	А
\odot , a , b , e , f	c, d				

The LAR reduction

Latest Appearance Record

A pair (π, i) where:

- $ightharpoonup \pi$ is a permutation over the states
- ▶ $1 \le i \le \#$ states

States of the reduced (priority) game = LARs of the original game

Successor transitions

$$(\pi,i) \rightarrow (\mu,j)$$
 if:

- \blacktriangleright $\pi(1) \rightarrow \mu(1)$
- $\mu(1) = \pi(j)$
- ▶ all other states stay in the same order

We need one colour for each LAR.

Detail of the transitions

Conclusion

Determinacy

One of the players has a winning strategy

Complexity

Finding the winner is PSPACE-complete for Muller-like games, and $NP \cap co-NP$ for priority games.

Strategies

Positional strategies in priority games, finite memory in Muller-like games through a reduction